µÚ¶þʮһÕÂ21.1Ò»Ôª¶þ´Î·½³ÌµÚÒ»Ìâ´ð°¸
¢Ù¢ß
µÚ¶þʮһÕÂ21.1Ò»Ôª¶þ´Î·½³ÌµÚ¶þÌâ´ð°¸
2x2-6x-1=0£»2£»-6
µÚ¶þʮһÕÂ21.1Ò»Ôª¶þ´Î·½³ÌµÚÈýÌâ´ð°¸
k¡Ù-4
µÚ¶þʮһÕÂ21.1Ò»Ôª¶þ´Î·½³ÌµÚËÄÌâ´ð°¸
2ºÍ-2
µÚ¶þʮһÕÂ21.1Ò»Ôª¶þ´Î·½³ÌµÚÎåÌâ´ð°¸
1
µÚ¶þʮһÕÂ21.1Ò»Ôª¶þ´Î·½³ÌµÚÁùÌâ´ð°¸
-3
µÚ¶þʮһÕÂ21.1Ò»Ôª¶þ´Î·½³ÌµÚÁùÌâ´ð°¸
-3
µÚ¶þʮһÕÂ21.1Ò»Ôª¶þ´Î·½³ÌµÚÆßÌâ´ð°¸
½â£ºÃ¿Ö§Çò¶Ó¶¼ÐèÒªÓëÆäËûÇò¶ÓÈû£¨x-1£©³¡£¬
µ«Á½¶ÓÖ®¼äÖ»ÓÐ1³¡±ÈÈü£¬ËùÒÔ¿ÉÁз½³ÌΪ£º
1/2x£¨x-1£©=4¡Á7
»¯³ÉÒ»Ôª¶þ´Î·½³ÌµÄÒ»°ãÐÎʽ£ºx2-x-56=0
µÚ¶þʮһÕÂ21.1Ò»Ôª¶þ´Î·½³ÌµÚ°ËÌâ´ð°¸
·½³Ì£¨k2-1£©x2-£¨k+1£©x+k=0ÊÇÒ»ÔªÒ»´Î·½³Ì-2x+1=0
£¨2£©µ±£¨k2-1£©¡Ù0ʱ£¬¼´k¡Ù¡À1ʱ£¬·½³Ì£¨k2-1£©x2-£¨k+1£©=0
ÊÇÒ»Ôª¶þ´Î·½³Ì·½³ÌµÄ¶þ´ÎÏîϵÊýÊÇk2-1£¬Ò»´ÎÏîϵÊýÊÇ-£¨k+1£©£¬³£ÊýÏîÊÇk