10月10日 星期三 晴
生活中到处离不开数学!
今天,我在家里做了一个事情,就是量一元硬币。
工具是:一套尺子,一个一元硬币,一只彩笔。
先用彩笔画出一元硬币的直径,它的直径是2.5厘米,要想算出圆的周长,再用2.5乘3.14等于7.85厘米如果知道圆的半径,在求圆的周长,应是:圆的半径乘3.14乘2。
我还知道:连接圆心和圆上任意一点的线段,叫做直径,一般用字母r来表示。通过圆心并且两端都在圆心的线段,叫做半径,一般用字母d来表示。圆心决定圆的位置,半径决定圆的大校
今天,我在家里没事干,就找到了一个以前四驱车的轮子。我就开始测量它的周长。找不着圆点是一个难事,于是我借用个课堂上的几个方法,由于这个轮子是安到这里的,所以很不好测量,最后我还是按照车轮的大小在纸上画出了一个圆。
测出了直径。3、14×2、5=7、85(厘米)。
这可真是一次有趣的测量啊!
10月15日 星期三 晴
那天的数学课上,刘老师说了这的样一句话:“课堂因差错而精彩。”——简短而意味深长。
六年级的上半个学期,我们学习用正比例解应用题。通过书上的几个例题的学习,我们得出了:正比例图象都是直线上升或下降的。就在我们要解决下一个问题时,范安琳提出了疑问:为什么不可能是上下起伏的折线而一定是直线呢?接下来的时间,我们便是在为她解答困惑中度过的。争论了一会儿,我也有点儿困惑了。我发现别的同学也略显困惑。老师让范安琳在黑板上画了一幅,我们这才明白了她的意思:如果数轴上的数据不按顺序排列,那图象就不会呈直线上升或下降。原来范安琳是忽略了数轴的特点。
这件事不就验证了那句话吗?课堂上因为她的一点错误,而使全班对数轴与正比例有了更深的认识;因此还使我认识到,错误不可怕,重要的是提出来,让大家来共同解决。由此我明白了在回答问题的时候,不要因担心出错而踯躅不前——课堂会因差错而精彩。
10月8日 星期三 晴
这个学期我们学了圆,圆是个很美的图形。每个图形都有着自己的周长和面积,理所当然,圆也是有周长和面积的,这节课我们去探索了圆的周长。
每个图形的周长都是指围成什么图形的曲线的长,又一个"理所当然",圆的周长也是指围成圆的曲线的长。每个图形计算周长时都会有一个重点,比如:长方形最重要的是知道长和宽,正方形要知道边长,三角形要知道底和宽……"理所当然"圆最重要的是二元素除了刚刚学的直径还有这一节课刚加入的"新朋友"圆周率。那圆周率又是什么呢?从书上中,我知道了:圆的周长除以直径的商是一个固定的数,我们就把它叫做圆周率,用字母π表示,计算时通常取3.14。虽然书上那么说,但我还是实践了一下。我用一张纸前了一个直径8厘米的圆,下一步我用线绕圆一周,量了长度就是25厘米的周长,用25除以8,算了算真的等于3.13。我认为是巧合,再算了几个不同的圆,才证明了这个书上的话。我在书上我又知道了,圆的周长=圆周率乘直径。我在老师的话语中我又知道圆的另一个秘密:半径扩大(缩小),直径也扩大(缩小),周长也扩大(缩小)同样的倍数。圆的周长真是有趣,我在知识与能力之中又发现了周长还可以乘另一个数,例如:一种压路机的前轮直径是1.5米,每分钟转8圈,压路机每分钟前进多少米?这个就是先算出1圈转多少(也就是周长),再乘8圈。就是1.5乘3.14=4.71米,再用4.71乘8=37.68米。"理所当然"有乘就有除,在书上的28页第6题就是一道典行的一道题。在计算圆的周长时也是有技巧的,我们记住3.14乘每一个数的答案,那我们做题时会很简便。