书通范文网 -工作总结,演讲稿,思想汇报,信函等各种范文。
书通网logo
当前位置: 书通网 > 范文 > 总结 > 数据处理工作总结(3)

数据处理工作总结(3)

时间:2013-06-30 作者:刘晨阳 分类:总结 来源:书通网


篇四:数据处理工作总结——处理海量数据的经验和技巧

    一、数据量过大,数据中什么情况都可能存在。
    如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。
    二、软硬件要求高,系统资源占用率高。
    对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过tb级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大cpu和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。
    三、要求很高的处理方法和技巧。
    这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。
    下面我们来详细介绍一下处理海量数据的经验和技巧:
    一、选用优秀的数据库工具
    现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用oracle或者db2,微软公司最近发布的sql server 2005性能也不错。另外在bi领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的etl工具和好的olap工具都十分必要,例如informatic,eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用sql server 2000需要花费6小时,而使用sql server 2005则只需要花费3小时。
    二、编写优良的程序代码
    处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。
    三、对海量数据进行分区操作
    对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如sql server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘i/o,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。
    四、建立广泛的索引
    对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个etl流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。
    五、建立缓存机制
    当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/buffer,这对于这个级别的数据量是可行的。

推荐阅读