习题4.5第1题答案
(1)x2y2-2xy+1
=(xy)2-2•xy•1+12
=(xy-1)2
(2)9-12t+4t2
=32-2×3×2t+(2t)2
=(3-2t)2
(3)y2+y+1/4
=y2+2•y•1/2+(1/2)2
=(y+1/2)2
(4)25m2-80m+64
=(5m)2-2×5m×8+82
=(5m-8)2
(5)x2/4+xy+y2
=(x/2)2+2•x/2•y+y2
=(x/2+y)2
(6)a2b2-4ab+4
=(ab)2-2•ab•2+22
=(ab-2)2
习题4.5第2题答案
(1)(x+y)2+6(x+y)+9
=(x+y)2+2•(x+y)•3+32
=[(x+y+3)] 2
=(x+y+3)2
(2)a2-2a(b+c)+(b+c)2
=a2-2•a(b+c)+(b+c)2
=[a-(b+c)] 2
=(a-b-c)2
(3)4xy2-4x2y-y3
=-y(-4xy+4x2+y2)
=-y[(2x)2-2•y+y2]
=-y(2x-y)2
(4)-a+2a2-a3
=-a(1-2a+a2)
=-a(1-a)2
习题4.5第3题答案
解:满足条件的单项式可以是:2x,x2+1+2x=(x+1)2
习题4.5第4题答案
解:两个连续奇数的平方差能被8整除.设这两个连续奇数为2n-1和2n+1
则(2n+1)2-(2n-1)2
=[(2n+1)+(2n-1)][(2n+1)-(2n-1)]
=(2n+1+2n-1)(2n+1-2n+1)
=4n•2
=8n
由于n为整数,所以8n能被8整除,即(2n+1)2-(2n-1)2能被8整除