习题13.3第13题答案
解:等腰三角形两底角的平分线相等,两腰上的中线相等,两腰上的高相等.以等腰三角形两腰上的高相等为例进行证明
已知:在△ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分别为点D,E,求证:BD=CE
证明:的那个顶角∠A为锐角时,如下图所示:
∵AB=AC
∴∠ABC=∠ACB
又∵BD⊥AC,CE⊥AB
∴∠BEC=CDB=90°
在Rt△BCE和Rt△CBD中
∴Rt△BCE≌Rt△CBD
∴BD=CE
习题13.3第14题答案
解:∵PQ=AP=AQ
∴△APQ是等边三角形
∴∠APQ=∠AQP=∠PAQ=60°
又∵BP=AP
∴∠BAP=∠B
又∵∠BAP+∠B=∠AOQ=60°
∴∠BAP=∠B=30°
同理∠CAQ=30°
所以∠BAC=∠BAP+∠PAQ+∠CAQ=30°+60°+30°=120°
习题13.3第15题答案
解:如下图所示:
作∠BAC的平分线AD交BC于点D,过点D作DE⊥AB于点E,则△ADC≌△ADE≌△BDE